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Abstract
Aligning Learning Outcomes (LO) to relevant por-
tions of Learning Resources (LR) is necessary to
help students quickly navigate within the recom-
mended learning material. In general, the problem
can be viewed as finding the relevant sections of a
document (LR) that is pertinent to a broad question
(LO). In this paper, we introduce the novel prob-
lem of aligning LOs (LO is usually a sentence long
text) to relevant pages of LRs (LRs are in the form
of slide decks). We observe that the set of rele-
vant pages can be composed of multiple chunks (a
chunk is a contiguous set of pages) and the same
page of an LR might be relevant to multiple LOs.
To this end, we develop a novel Lexico-Semantic
Spatial approach that captures the lexical, seman-
tic, and spatial aspects of the task, and also allevi-
ates the limited availability of training data. Our
approach first identifies the relevancy of a page to
an LO by using lexical and semantic features from
each page independently. The spatial model at a
later stage exploits the dependencies between the
sequence of pages in the LR to further improve the
alignment task. We empirically establish the impor-
tance of the lexical, semantic, and spatial models
within the proposed approach. We show that, on
average, a student can navigate to a relevant page
from the first predicted page by about four clicks
within a 38 page slide deck, as compared to two
clicks by human experts.

1 Introduction
Problem based learning involves students to refer to learning
materials while solving the problem at hand [Wood, 2003].
In such scenarios, it is important to show only the pertinent
pages relevant from a Learning Resource (LR) to engage the
learner. LRs range from books with several pages of infor-
mation delving on various topics to well curated and concise
slide decks that are organized based on desired learning out-
comes. Learning Outcomes (LO) are statements that describe
the demonstrable knowledge to be acquired during a learning
activity [Harden, 2002]. Each LO is a brief text consisting of

Muscle Spindles
Muscle Spindles

LO:Recall the receptors in the muscles, joints and tendons that control 
movement (muscle spindles, golgi tendon organs, pacinian corpuscles)

Muscle receptors
• Flow of information from 

muscles, joints and skin can 
influence firing rates of 
motor neurons to adjust 
contraction to match the 
task/load required. 

• These receptors include
• Musclespindles
• Golgi tendon organs 
• Pacinian corpuscles 

and free nerve 
endings

Golgi Tendon Organs 
• Located at insertion of 

skeletal muscle fibres into 
the tendons 

• Formed from strands of 
collagen 

• Innervated by 1b sensory 
neurons 

• Sense force produced by 
muscle when compressed 

• Involved in the golgi tendon 
reflex (the inverse of the 
stretch reflex) 

pg. 39 pg. 44pg. 43

Figure 1: An LO and three relevant pages from the corresponding
LR with lexical (left), semantic (right) and spatial (middle) aspects.

bloom verb(s) [Bloom and others, 1956] and the concepts or
topics to be mastered during the learning activity.

In this paper, we present the novel problem of identifying
the set of relevant pages for an LO within an LR (slide deck).
An LO can be considered as a broad question and this task is
similar to finding pertinent pages in the document (LR) that
answer the question. We consider a catalogue of LOs and
their corresponding LRs spanning across five years of a med-
ical curriculum. Figure 1 shows one such LO pertaining to
muscle receptors and movement. The three pages numbered
39, 41, and 44 are identified relevant by content experts who
are both doctors and faculty in the medical school. The indi-
vidual pages of LRs, being slides, have prominent titles and
bodies. The slides are usually designed with visual appeal and
brevity in mind. Thus, they are typically composed of very
few lines of text and contain images or tables or a combina-
tion of these. The brevity within a page and any arbitrary or-
der of information pose significant challenges. Techniques to
learn semantic representations of structured documents may
not be sufficient in these scenarios where short sentences and
keywords appear without any specific order among them.

We observe that identifying the relevancy of a page has
three key aspects – (1) Lexical, (2) Semantic, and (3) Spa-
tial. We motivate these aspects with the help of an example.
In Figure 1, page 39 can be identified based on the overlap
between the terms in the LO and those in the page (lexical as-
pect). On the other hand, although page 44 has significantly
lesser overlaps, semantically it describes the receptors in the
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Figure 2: Distribution of chunk counts and page spans for the rele-
vant pages of the LOs in the dataset.

Golgi Tendon Organ (semantic aspect). Finally, neither lex-
ical nor semantic overlap will be beneficial for page 43 as
it contains very little unstructured text used for labeling the
images. However, the page, being in close proximity to a se-
mantically relevant page, might refer to a continuation of the
same concept and is also likely to be relevant (spatial aspect).

Obtaining annotated training data for this task is expensive
as the expert has to go through the entire LR for annotating
each LO. Constrained by a limited set of annotated LOs (694
in total), we observe that training a joint model that captures
all the three aspects of the task might be prohibitive and al-
most impossible to scale to unseen LRs. Thus, we develop
a pipelined approach consisting of separate models capturing
each of the aspects that converts the alignment problem into a
page relevancy classification problem. In summary, we make
the following contributions in this paper.

1. We define the novel task of aligning Learning Outcomes
(LO) to specific pages of Learning Resources (LR),
where each LR is a slide deck.

2. We propose a novel two-stage Lexico-Semantic Spa-
tial approach consisting of lexical, semantic and spatial
models. Our approach is easily extensible and also alle-
viates the limited availability of training data.

3. We evaluate the effectiveness of our approach for the
page relevancy task as well as the final LO alignment
task using both standard metrics and a novel Click met-
ric. Our approach not only achieves strong results
against natural baselines but also learns important char-
acteristics of the task.

2 Related Work
The task of aligning LOs to relevant pages in LRs is related
to two broad bodies of work – Document Retrieval and Text
Segmentation. However, our problem is unique compared to
existing problems in these areas as discussed below.

2.1 Document Retrieval
Query-based document retrieval [Voorhees et al., 2005; Mitra
and Craswell, 2017] is a long-standing problem in Informa-
tion Retrieval. For our task, an LO can be thought of as a
single-sentence query and the pages of an LR can be treated
as documents. In the education domain, [Contractor et al.,
2015] also use retrieval techniques for labeling learning con-
tent with learning standards by ranking the semantic repre-
sentations of the documents using a matching score. How-
ever, unlike such retrieval tasks, our task of LO alignment

has two key differences - (1) The pages of an LR are not
independent documents. In fact, the sequential order of the
pages affects the relevancy output, as exploited by our spa-
tial model. (2) The pages also do not follow a ranked or-
der of relevancy; rather there are two distinct classes of rel-
evance and irrelevance. Thus, we explicitly model the task
as a classification problem and not a ranking problem. Our
idea of using lexical and semantic features to evaluate the
relevance of an independent document (page in our case)
has been explored before in multiple IR and NLP tasks. In
fact, [Mitra et al., 2017] show that for web search, some
queries can be answered by exact matches while others re-
quire semantic matching in the embedding space. On simi-
lar lines, we also develop a lexical and semantic model for
identifying a page’s relevancy. Our semantic model is in-
spired from existing deep learning models for textual simi-
larity and entailment tasks [Mueller and Thyagarajan, 2016;
Conneau et al., 2017].

2.2 Text Segmentation
Another close body of work is that of Text Segmentation, the
problem of semantically dividing a document into contiguous
segments. Techniques range from early unsupervised models
like LDA [Riedl and Biemann, 2012] and graph-based meth-
ods [Glavaš et al., 2016] to recent supervised deep models
[Koshorek et al., 2018]. However, these methods segment
documents based on topical shifts only and are not governed
by any query. A more closely related work is by [Bhartiya
et al., 2016] where they perform document segmentation for
LO alignment using an unsupervised segmentation technique
followed by ranking. To the best of our knowledge, LO align-
ment to slide decks has not been explored before. Unlike text
books, slide decks are already segmented into a sequence of
slides. Also, these slides pose multiple structural challenges
including limited and unstructured texts among others.

3 Data Description and Analysis
Our dataset consists of a total of 100 LRs. The total number
of LOs across these LRs is 694, with an average of 7 LOs per
LR. The minimum, maximum and average number of pages
for an LR are 10, 165, and 42, respectively.

We make the following observations from the expert-
annotated pages for each LO. The average number of pages
pertinent to an LO is 4.73, with the median at 3 pages, and the
maximum and minimum being 45 and 1, respectively. Al-
though the number of pages can be fairly large for certain
LOs, around 71% of them have less than 6 relevant pages.

Our second key observation is that the set of relevant pages
is not always a contiguous set. Figure 2 shows the cumulative
distribution of the LOs with the number of chunks (a chunk
is a contiguous span of pages). We find 34% of the LOs have
more than 1 chunk. We also observe that more than 8% of the
aligned pages belong to more than one LO. Thus, we treat the
pages and the LOs independently in the lexical and semantic
components of our model, without enforcing any constraint
on the contiguity of the pages.

Our third observation is also plotted in Figure 2 where we
show the distribution of the span of the pages. Page span of an
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Figure 3: Block diagram of the Lexico-Semantic Spatial approach.
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LO is the difference between the maximum and the minimum
page numbers from the relevant set. We observe that around
80% of the LOs have a span below 11, suggesting that the
chunks tend to be in close proximity of each other. Our spatial
model relaxes the independence assumption of the pages and
achieves similar distributions in chunk counts and page spans.

4 Proposed Approach
In this section, we first formulate the problem and then de-
scribe the proposed lexico-semantic spatial approach.

4.1 Problem Formulation
We formulate the problem as a binary classification task
where given an LO and a page of an LR , the model pre-
dicts its relevance. In this task, for each LO, all the relevant
pages are positive samples and all other pages from the same
LR are the negative samples. We call this task as the page rel-
evancy task. During the LO alignment task, we collate all the
predicted relevant pages by the page relevancy task as perti-
nent pages for the LO. Note that our choice of modeling has
two key advantages - (1) It largely alleviates the data scarcity
problem. From only 694 samples in the LO alignment task,
we are now able to generate 26,253 samples for the page rele-
vancy task, with 3,278 positive and 22,975 negative samples.
(2) Our approach directly learns the distribution of the num-
ber of pages as opposed to a ranking formulation.

4.2 Lexico-Semantic Spatial Approach
Our approach is a combination of three models – a lexical
model, a semantic model, and a spatial model. The spatial
model infers the final relevancy using the relevancy scores of
the other two models. Figure 3 shows the block diagram.

Lexical Model
The lexical model is composed of lexical overlap-based fea-
tures between an LO and a page. For a page, we initially

extract the tokens in the title and the body of the page sepa-
rately. The details of the extraction algorithm are provided in
the experiments section. We develop two features as follows.
LO and Title Overlap. This feature computes the propor-
tion of overlap between the LO tokens and the title tokens of
the page.
LO and Body Overlap. This feature computes the propor-
tion of LO tokens that are overlapping with the body of the
page. The body is an explanation of the title and the title
tokens are often repeated multiple times. Therefore, we con-
sider only those overlapping tokens within the body of a page
that are not part of the title.

We tried experimenting with inexact overlaps of tokens us-
ing the cosine similarity of word vectors followed by thresh-
olding. However, this deteriorated the performance because a
well-curated LR mostly uses the same terms as mentioned in
the LO. For example, a relevant page for the LO “Explain the
mechanisms underlying Starling’s Law of the Heart” would
be using the exact phrase “Starling’s Law of the Heart”.

Semantic Model
Our semantic model, as shown in Figure 4, is a self-attention
based neural architecture, aimed specifically for the samples
where only lexical overlaps are insufficient to infer a page’s
relevancy. A key component of this model is a text encoder,
used for encoding the LO, the title and the body of the page.

The text encoder provides a dense feature representation of
an input text. We use a Bidirectional Long Short-Term Mem-
ory Network [Hochreiter and Schmidhuber, 1997] (BiLSTM)
with self-attention to encode the text. Each word in the text
is first embedded using an embedding layer. The words are
initialized with pre-trained word embeddings, which are fur-
ther trained to reflect the task dependent nature of the words.
The sequence of words are then passed through a BiLSTM
layer. It generates a sequence of hidden representations. Not
all words in the text contribute equally to its meaning. This
is especially true for the body of the page which can be fairly
long and a single BiLSTM layer might not be able to learn a
good representation of it. Thus, we apply self-attention [Liu
et al., 2016; Lin et al., 2017] to extract the importance of the
words and aggregate their representations to form a vector.
Formally,

ut = tanh(Wht + b) , αt =
eut·uw∑
t
eut·uw , v =

∑
t
αtht

Each ut is a hidden representation of the BiLSTM output ht
formed by passing through a dense layer with weightsW and
bias b. The importance of each word is measured by taking
the similarity between ut and the context vector uw. αt is the
normalized importance of each word obtained by passing the
similarity values through a softmax function. The final text
embedding is a weighted sum of the BiLSTM outputs.



Our final model is a siamese network [Mueller and Thya-
garajan, 2016] i.e. we use the same text encoder with the
same weights to encode the LO, the title, and the body. Let
L, T , and B be d-dimensional embeddings of the LO, the ti-
tle and the body respectively. Our final feature representation
is computed as the concatenation of L, T , B, absolute dif-
ference between L, T and absolute difference between L, B.
The absolute differences between the LO embeddings with
those of the title and the body capture their relatedness in the
semantic space. Finally, a dense layer with a softmax func-
tion converts the features into relevancy scores.

4.3 Spatial Model
The lexical and semantic models output a relevancy score for
each page of an LR. The spatial model relaxes the indepen-
dence assumption of each page and models the space spanned
by the relevant pages in the resource. It uses the scores from
all the pages of the same LR to improve the current page’s rel-
evance. For example, a page appearing between two highly
relevant pages is also likely to be relevant (Consider pg 43
in Figure 1). Specifically, we develop the following features
using the relevancy scores of the lexical model.
Relevance (R). The relevance of the page.
Context Relevance (CR). The relevancy scores of the
neighbouring pages within a window of size k on either sides.
In our experiments, we choose k = 1.
Range of Relevance (RC). The absolute difference be-
tween the relevance of the current page and the pages in the
LR with the minimum and maximum relevance scores. Thus,
even if the page’s relevance is low, if it is one of the higher
values in the entire LR, it is likely to be relevant.
Range of Pages (RP). The absolute difference between the
current page’s page number with those of maximum and min-
imum relevance scores. The features are normalized by divid-
ing by the total number of pages in the LR. It computes how
far the page is with respect to the minimum and the maximum
relevance pages.
Histogram of Relevance (H). We compute a histogram of
the scores for all the pages in the LR. The features are these
bin counts normalized between 0 and 1. They represent an
approximate distribution of the relevance scores of the entire
LR. We choose the number of bins as 10 with bin size 0.1.

We also compute the same set of features using the scores
of the Semantic model. Our final feature representation for
the spatial model is a 34-dimensional vector, formed by con-
catenating the 17 features from both the lexical and the se-
mantic model.

5 Experiments
We show the effectiveness of our approach for both the page
relevancy task and the LO alignment task.

5.1 Implementation Details
We use the PdfBox1 java library to parse the pdf LRs. From
each page, we extract all the text snippets in order along with

1https://pdfbox.apache.org/

Train Test Total
LRs 75 25 100
LOs 535 159 694
(Page, LO) relevant pairs 2,547 731 3,278
(Page, LO) irrelevant pairs 18,192 4,783 22,975
(Page, LO) all pairs 20,739 5,514 26,253

Table 1: Details of train-test splits.

M-F1 W-F1
Lexical on Title Only 0.5316 0.8261
Lexical on Title and Body 0.5659 0.8359
Semantic on Title Only 0.5958 0.8123
Semantic on Title and Body 0.5644 0.8156
Semantic on Title and Body
with Self-Attention 0.6375 0.8356

Table 2: Comparison of the Lexical and Semantic models.

their font sizes and if they are marked in bold. The title of
the page is identified as the bold text snippets with largest
font in the page. Everything else is considered as part of the
body. All word vectors are initialized with 250-dimensional
embeddings, pre-trained on the PubMed corpus [Chiu et al.,
2016] and further updated for our task.

We perform the train-test split at the level of LRs – we keep
75 LRs for training and 25 for testing. We do so as our model
needs to align LOs for unseen LRs. The page relevancy task is
performed using 20,739 training samples and 5,514 test sam-
ples. Note that the original LO alignment task is still tested
on 159 LOs. Table 1 shows the details.

5.2 Page Relevancy Task
We evaluate the effectiveness of our approach as follows.
First, we compare the lexical and semantic models. Second,
we show the effectiveness of the lexico-semantic spatial ap-
proach and finally, we perform a detailed ablation of the spa-
tial features. Although we report both macro average-F1 and
weighted-F1, we compare using the former due to the imbal-
ance in the dataset.

Comparison of Lexical and Semantic Models
Table 2 compares the performance of the various lexical and
semantic models. The inclusion of the overlapping tokens
from the body of the page improves the macro-F1 of the lex-
ical model by 3 points. The semantic model, which learns
only the LO and the title embeddings improves the macro-F1
by further 3 points. However, we observe a drop in perfor-
mance after including the body embedding. We believe this
is because the text snippets in the body are often ungrammati-
cal and un-ordered and considering them as a single sequence
of text might be detrimental. The best macro-F1 is obtained
by applying self-attention and is 7 points better than the lex-
ical model. Self-attention helps the model to focus on only
the key tokens that are useful for aligning the LO to the page.

Effectiveness of Lexico-Semantic Spatial Approach
We now demonstrate the effectiveness of the proposed ap-
proach by performing ablation on the individual compo-
nents. Specifically, we compare the lexico-semantic spatial

https://pdfbox.apache.org/


M-F1 W-F1 Rel P Rel R Rel F1
Lexical 0.5659 0.8359 0.7304 0.1149 0.1986
Lexical+Spatial 0.6332 0.8559 0.6991 0.2161 0.3302
Semantic 0.6375 0.8356 0.3812 0.3557 0.3680
Semantic+Spatial 0.6577 0.8487 0.4430 0.3611 0.3892
Lexico-Semantic Spatial 0.6609 0.8486 0.4381 0.3776 0.4056
Human 0.8362 0.9256 0.7369 0.6936 0.7146

Table 3: Comparison of Lexico-Semantic Spatial approach with ab-
lated models and human performance for the Page Relevancy Task.

approach against four baselines – (1) lexical model (2) lexi-
cal + spatial model – spatial features from the lexical model
only. (3) semantic model, and (4) semantic + spatial model –
spatial features from the semantic model only. We also com-
pare against human performance by asking another content
expert to align the LOs in the test set and then evaluating
these against the gold results. In Table 3, we report the over-
all macro-F1, weighted-F1 and also the precision, recall and
F1 of the relevant class for all the models. Application of the
spatial features improves the macro-F1 of the lexical model
by 7 points and that of the semantic model by 2 points. This
shows that the spatial features are generic and can be used to
improve any model that captures the relevancy of each page
independently. The lexico-semantic spatial approach obtains
the best macro-F1 at 0.6609, a further improvement from the
lexical+spatial and semantic+spatial models. We believe that
the spatial model can act on any ensemble of independent
page relevancy models capturing complementary information
and should lead to further improvements.

We observe that the lexical model has the best relevant
class precision but a significantly low recall. The seman-
tic+spatial model has the best recall but much worse preci-
sion. Overall, the lexico-semantic spatial model achieves the
best F1 for the relevant class at 0.4056, a significant 20 points
improvement over the lexical model. Compared to human
performance, our approach’s relevant class recall is signifi-
cantly lower. This observation is further discussed as part of
the LO alignment task and future work.

Ablation Study of Spatial Features
We provide a detailed ablation study of the spatial features on
both our lexical and semantic models. Table 4 shows the re-
sults. We first describe our observations for the lexical model.
We start with a single feature, the lexical relevance (R) of the
corresponding page. Inclusion of the relevance scores of the
neighbouring pages (CC) improves the macro-F1 by 2 points.
The range features (RC and RP) improve performance by a
significant 4 points. Finally, the histogram of relevance scores
(H) leads to an overall improvement of 7 points in macro-F1.
We observe consistent improvements with the spatial features
for the semantic model as well.

5.3 LO Alignment Task
We now evaluate the effectiveness of our approach on the LO
alignment task. For each LO, we have a gold set and a pre-
dicted set of pages obtained after collating all the relevant
pages from the page relevancy task. Note that this might lead
to scenarios where the predicted set is empty for certain LOs.
Since we know that at least one page will be relevant for such

Lexical Semantic
M-F1 W-F1 M-F1 W-F1

R 0.5671 0.8363 0.5917 0.7975
R+CR 0.5878 0.8348 0.6335 0.8306
R+CR+RC 0.6253 0.8437 0.6392 0.8314
R+CR+RC+RP 0.6273 0.8500 0.6485 0.8391
R+CR+RC+RP+H 0.6332 0.8559 0.6577 0.8487

Table 4: Spatial features ablation on Lexical and Semantic models.

LOs, we also add a post processing step (PP) to our approach
whereby we include the most relevant page (highest relevance
class confidence) within the LR. We compare the models us-
ing two metrics – (1) Precision, Recall, F1 and (2) Click.

Precision for each LO is computed as the number of com-
mon pages upon the number of predicted pages, while recall
is the number of common pages upon the number of gold
pages. Final precision and recall are obtained by averaging
over the per LO precision and recall values in the test set. F1
is the harmonic mean of the final precision and recall.

We now describe the click metric. The main objective of
the LO alignment task is to allow easy navigation of perti-
nent pages in an LR to a student during problem solving. In
our application, for an LO, the predicted pages are first or-
dered based on the page numbers and then the first predicted
page is presented along with links to all the other predicted
pages. The student, at any time, can also navigate to an adja-
cent page. Therefore, the presence of a relevant page closer
to first predicted page becomes critical. We develop a novel
click metric to measure the number of clicks a student has to
spend to get to a relevant page from the first predicted page.
For the LOs with at least one correctly predicted page, the
click metric value is the index of the first correctly predicted
page. In the absence of any correctly predicted page, the ex-
pected click metric is

click = |predicted pages|+ f − fb
2

+
fw − f

2

We assume that the student first looks at all the predicted
pages, and then, with equal probability, navigates to the ad-
jacent pages on either directions from the first predicted page
(f ). fb and fw are the page numbers of the first pages encoun-
tered on the backward and forward direction respectively that
overlap with the gold set. The final click value is the average
of the per LO click values.

Table 6 shows the results of the LO alignment Task. The
semantic model significantly outperforms the lexical model
by 17 points better F1. Similar to the page relevancy task,
application of spatial features improve both these models –
15 points better F1 for the lexical model and 5 points for the
semantic model. In this task too, the lexico-semantic spa-
tial model has the best precision, recall, and F1 scores. After
the post-processing step, the lexico-semantic spatial model
improves further. In order to gather insights about our ap-
proach’s relatively low recall, we analyzed the pages where
only the human expert was able to correctly classify them as
relevant. Interestingly, we find that 68.3% of these pages con-
tain images with very less or no text at all.

For the click metric, we additionally compute the sequen-
tial number of clicks – number of clicks spent by the students



LOs Lexical Lexical+Spatial Semantic Semantic+Spatial Lexico-Semantic Spatial Gold
LO1 [35-37] , 38 , 39 [35-37] , [38-39] 10,33 , [35-39] 34 , [35-39] [35-39] [35-39]
LO2 6 , [8-9] [6-7] , [8-9] 7 , 8 , 9 , 15 7 , [8-9] , 15 7 , [8-9] [8-9]
LO3 17 , 18 , 19 , [26-28] [17-19] , [26-28] 17 , 18 , 19 , [26-28] , 30 [14-16] , 17 , 18 , 19 , [26-28] , 30 [17-19] , [26-28] [17-19] , [26-28]
LO4 [5-11] [] [5-11] [] 5 , [6-9] , [10-11] [5-6] , 7 , [8-10] , 11 [5-10] , 11 [5-11]
LO5 39 , [40-45] , 46 [39-40] , [41-43] , [44-46] 6 , [40-41] , [42-43] , [44-45] [40-41] , [42-43] , [44-45] [39-41] , 42 , [43-46] [39-46]

Table 5: Comparison of the gold pages with the pages predicted by the different models for five sample LOs. Green, red, and gray represent
pages correctly classified as relevant, incorrectly classified as relevant, and incorrectly classified as irrelevant respectively.

Precision Recall F1 Clicks
Baseline-Seq - - - 18.35

Lexical 0.2315 0.1531 0.1843 12.55
Lexical+Spatial 0.3969 0.2936 0.3375 7.81
Semantic 0.3210 0.3846 0.3499 7.67
Semantic+Spatial 0.3947 0.4107 0.4026 5.80
Lexico-Semantic Spatial 0.4013 0.4342 0.4171 5.34
Lexico-Semantic Spatial +
Post Processing 0.4327 0.4609 0.4464 4.96

Human 0.7330 0.7671 0.7497 2.01

Table 6: Comparison of the different models with human perfor-
mance for the LO Alignment Task. Lower click value is desirable.
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Figure 5: Comparison of the chunk counts (left) and the page spans
(right) for the different models with the gold labels on the test set.

if they reach the first relevant page from the beginning of an
LR, sequentially. This provides a baseline performance in
the absence of the LO alignment system. Further, we com-
pute human performance based on the annotated pages by the
content expert. This provides a skyline performance in the
presence of a highly accurate LO alignment system. Our ex-
periments show that compared to the baseline click value of
18 and skyline human performance of 2 clicks for an average
38 page LR, our best approach yields click value of 4. This
implies, in our application, a student can reach a relevant page
by 4 clicks from the first shown page.

5.4 Deeper Analysis of the Spatial Model
We demonstrate how the spatial model helps in learning the
important characteristics of the task. Figure 5 compares the
chunk counts of the predicted pages by all the algorithms with
those of the gold pages for the test LOs. For 70% of the
LOs, the lexical model does not output any relevant page and
hence the chunk count is also 0. The semantic model, on the
other hand, outputs lot more relevant pages which are typi-
cally scattered, leading to larger number of chunks. The spa-
tial model improves it by reducing the number of chunks. The
lexico-semantic spatial model has the best chunk distribution
and is closest to the gold.

We perform a similar analysis on the span of the predicted
pages for the test LOs. Since the lexical model predicts only a

small number of relevant pages, the span of the pages for ma-
jority of the LOs is also smaller. The semantic model, how-
ever, predicts pages that are scattered throughout the LR and
hence the spans for many LOs are significantly higher. The
graph corresponding to the lexico-semantic spatial model is
again the closest to the gold one. Both these plots demon-
strate that apart from predicting more correct pages, our ap-
proach also learns important characteristics of the task.

In Table 5 we provide examples showing how the spatial
model reduces the chunk counts and the page spans. We ob-
serve two different phenomena with the output of the spatial
model – (1) It fills intermediate pages between lexically or
semantically relevant ones, and (2) It removes isolated irrel-
evant pages. The first phenomenon is visible in LO3 where
the spatial model brings in page 18 to complete the chunk
[17-19]. The second phenomenon is observed in LO1, where
pages 10 and 33 are removed. Note that both these operations
lead to a reduction in chunk counts. The span also typically
decreases when irrelevant pages that are not in proximity of
other chunks are removed.

6 Conclusion and Future Work
In this work, we introduced the novel problem of aligning
LOs to relevant pages of LRs, the LRs being slide decks.
The main contribution of this paper is in developing a novel
pipelined approach capturing the lexical, semantic, and spa-
tial aspects of the task with limited availability of annotated
data. Our approach also learns important characteristics like
number of chunks and page span for the set of relevant pages.

Empirical evaluation of our approach, through ablation
studies, establishes the effectiveness of the lexical, semantic,
and spatial models. While there is scope for improving the
F1 metric of the proposed approach, our experiment with the
click metric is promising. We show that the learning experi-
ence in terms of a student navigating to a relevant page from
the first predicted page is four clicks compared to human per-
formance of two (for an average sized LR of 38 pages).

We observe that our approach does not exploit informa-
tion contained in images leading to significantly lower recall.
Therefore, as part of future work, we plan to extend our ap-
proach to include a model similar to the lexical and the se-
mantic ones that processes the images. Finally, we see the
need to improve the text encoder in the semantic model. This
is mainly due to the challenges posed by the slides where the
texts are non-sentential and lacks a definite order. These im-
provements should further enhance the LO alignment task.
We believe that our approach is generic and as future work,
we plan to validate this approach in the context of finding
relevant pages of a document that answer a broad question.
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